Approximation of solution branches of nonlinear equations
نویسندگان
چکیده
منابع مشابه
Approximation of solution branches of nonlinear equations
We present a gênerai theory for the approximation of regular and bifurcating branches of solutions ofnonhneat équations It can be apphed to numerous problems, including different ial équations on unbounded domains, in connection with vanous numencal algonthms, for example Galerkin methods with numencal intégration Résumé —On présente une théorie générale de l'approximation de branches, régulièr...
متن کاملexistence and approximate $l^{p}$ and continuous solution of nonlinear integral equations of the hammerstein and volterra types
بسیاری از پدیده ها در جهان ما اساساً غیرخطی هستند، و توسط معادلات غیرخطی بیان شده اند. از آنجا که ظهور کامپیوترهای رقمی با عملکرد بالا، حل مسایل خطی را آسان تر می کند. با این حال، به طور کلی به دست آوردن جوابهای دقیق از مسایل غیرخطی دشوار است. روش عددی، به طور کلی محاسبه پیچیده مسایل غیرخطی را اداره می کند. با این حال، دادن نقاط به یک منحنی و به دست آوردن منحنی کامل که اغلب پرهزینه و ...
15 صفحه اولNumerical solution of general nonlinear Fredholm-Volterra integral equations using Chebyshev approximation
A numerical method for solving nonlinear Fredholm-Volterra integral equations of general type is presented. This method is based on replacement of unknown function by truncated series of well known Chebyshev expansion of functions. The quadrature formulas which we use to calculate integral terms have been imated by Fast Fourier Transform (FFT). This is a grate advantage of this method which has...
متن کاملSolution of Nonlinear Equations
Suppose that f is a continuous function on the interval [a, b] and f(a)f(b) < 0. By intermediate value theorem, f has at least one zero in the interval [a, b]. We next calculate c = (a + b)/2 and test fc). If f(c) = 0, then c is the root and we are done. If not, then either f(a)f(c) < 0 or f(b)f(c) < 0. In the former case, a root lies in [a, c] and we rename c as b and do the same process. In t...
متن کاملnumerical solution of general nonlinear fredholm-volterra integral equations using chebyshev approximation
a numerical method for solving nonlinear fredholm-volterra integral equations of general type is presented. this method is based on replacement of unknown function by truncated series of well known chebyshev expansion of functions. the quadrature formulas which we use to calculate integral terms have been imated by fast fourier transform (fft). this is a grate advantage of this method which has...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: RAIRO. Analyse numérique
سال: 1982
ISSN: 0399-0516
DOI: 10.1051/m2an/1982160403191